

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 1 of 15 www.netacad.com

Lab - Software Version Control with Git (Instructor Version)

Instructor Note: Red font color or gray highlights indicate text that appears in the instructor copy only.

Answers: 3.3.11 Lab - Software Version Control with Git

Objectives

Part 1: Launch the DEVASC VM

Part 2: Initializing Git

Part 3: Staging and Committing a File in the Git Repository

Part 4: Managing the File and Tracking Changes

Part 5: Branches and Merging

Part 6: Handling Merge Conflicts

Part 7: Integrating Git with GitHub

Background / Scenario

In this lab, you will explore the fundamentals of the distributed version control system Git, including most of
the features you need to know in order to collaborate on a software project. You will also integrate your local
Git repository with the cloud-based GitHub repository.

Required Resources

 1 PC with operating system of your choice

 Virtual Box or VMWare

 DEVASC Virtual Machine

Instructions

Part 1: Launch the DEVASC VM

If you have not already completed the Lab - Install the Virtual Machine Lab Environment, do so now. If you
have already completed that lab, launch the DEVASC VM now.

Part 2: Initializing Git

In this part, you will initialize a Git repository.

Step 1: Open a terminal in the DEVASC-LABVM.

Double-click the Terminal Emulator icon on the desktop.

Step 2: Initialize a Git Repository.

a. Use the ls command to display a listing of the current directory. Remember that commands are case-
sensitive.

devasc@labvm:~$ ls

Desktop Downloads Music Public Templates

https://itexamanswers.net/3-3-11-lab-software-version-control-with-git-answers.html

Lab - Software Version Control with Git

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 2 of 15 www.netacad.com

Documents labs Pictures snap Videos

devasc@labvm:~$

b. Next, configure user information to be used for this local repository. This will associate your information
the work that you contribute to a local repository. Use your name in place of "Sample User" for the name
in quotes " ". Use @example.com for your email address.

Note: These settings can be anything you want at this point. However, when you reset these global
values in Part 7, you will use the username for your GitHub account. If you wish, you can use your GitHub
username now.

devasc@labvm:~$ git config --global user.name "SampleUser"

devasc@labvm:~$ git config --global user.email sample@example.com

c. At any time, you can review these setting with the git config --list command.

devasc@labvm:~$ git config --list

user.name=SampleUser

user.email=sample@example.com

devasc@labvm:~$

d. Use the cd command to navigate to the devnet-src folder:

devasc@labvm:~$ cd labs/devnet-src/

devasc@labvm:~/labs/devnet-src$

e. Make a directory git-intro and change directory into it:

devasc@labvm:~/labs/devnet-src$ mkdir git-intro

devasc@labvm:~/labs/devnet-src$ cd git-intro

devasc@labvm:~/labs/devnet-src/git-intro$

f. Use the git init command to initialize the current directory (git-intro) as a Git repository. The message
displayed indicates that you have created a local repository within your project contained in the hidden
directory .git. This is where all of your change history is located. You can see it with the ls -a command.

devasc@labvm:~/labs/devnet-src/git-intro$ git init

Initialized empty Git repository in /home/devasc/labs/devnet-src/git-intro/.git/

devasc@labvm:~/labs/devnet-src/git-intro$ ls -a

. .. .git

devasc@labvm:~/labs/devnet-src/git-intro$

g. As you work on your project, you will want to check to see which files have changed. This is helpful when
you are committing files to the repo, and you don't want to commit all of them. The git status command
displays modified files in working directory that are staged for your next commit.

This message tells you:

 That you are on branch master. (Branches are discussed later in this lab)

 The commit message is Initial commit.

 There is nothing changed to commit.

You will see that the status of your repo will change once you add files and start making changes.

devasc@labvm:~/labs/devnet-src/git-intro$ git status

On branch master

No commits yet

Lab - Software Version Control with Git

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 3 of 15 www.netacad.com

nothing to commit (create/copy files and use "git add" to track)

devasc@labvm:~/labs/devnet-src/git-intro$

Part 3: Staging and Committing a File in the Repository

In this part you will create a file, stage that file, and commit that file to the Git repository.

Step 1: Create a file.

a. The git-intro repository is created but empty. Using the echo command, create the file DEVASC.txt with
the information contained in quotes.

devasc@labvm:~/labs/devnet-src/git-intro$ echo "I am on my way to passing the

Cisco DEVASC exam" > DEVASC.txt

devasc@labvm:~/labs/devnet-src/git-intro$

b. Use the ls -la command terify the file, as well as the .git directory, are in the git intro directory. Then use
cat to display the contents of DEVASC.txt.

devasc@labvm:~/labs/devnet-src/git-intro$ ls -la

total 16

drwxrwxr-x 3 devasc devasc 4096 Apr 17 20:38 .

drwxrwxr-x 5 devasc devasc 4096 Apr 17 19:50 ..

-rw-rw-r-- 1 devasc devasc 48 Apr 17 20:38 DEVASC.txt

drwxrwxr-x 7 devasc devasc 4096 Apr 17 19:57 .git

evasc@labvm:~/src/git-intro$ cat DEVASC.txt

I am on my way to passing the Cisco DEVASC exam

devasc@labvm:~/labs/devnet-src/git-intro$

Step 2: Examine the Repository Status.

Examine the repository status using git status. Notice that Git found the new file in the directory, and knows
that it's not tracked.

devasc@labvm:~/labs/devnet-src/git-intro$ git status

On branch master

No commits yet

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 DEVASC.txt

nothing added to commit but untracked files present (use "git add" to track)

devasc@labvm:~/labs/devnet-src/git-intro$

Step 3: Staging the File.

a. Next, use the git add command to "stage" the DEVASC.txt file. Staging is an intermediate phase prior to
committing a file to the repository with the git commit command. This command creates a snapshot of
the contents of the file at the time this command is entered. Any changes to the file require another git
add command prior to committing the file.

devasc@labvm:~/labs/devnet-src/git-intro$ git add DEVASC.txt

b. Using the git status command again, notice the staged changes displayed as "new file: DEVASC.txt".

Lab - Software Version Control with Git

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 4 of 15 www.netacad.com

devasc@labvm:~/labs/devnet-src/git-intro$ git status

On branch master

No commits yet

Changes to be committed:

 (use "git rm --cached <file>..." to unstage)

 new file: DEVASC.txt

devasc@labvm:~/labs/devnet-src/git-intro$

Step 4: Committing a File.

Now that you have staged your changes, you will need to commit them in order to let Git know you want to
start tracking those changes. Commit your staged content as a new commit snapshot by using the git
commit command. The -m message switch enables you to add a message explaining the changes you've
made. Note the number and letter combination highlighted in the output. This is the commit ID. Every commit
is identified by a unique SHA1 hash. The commit ID is the first 7 characters of the full commit hash. Your
commit ID will be different than the one displayed.

devasc@labvm:~/labs/devnet-src/git-intro$ git commit -m "Committing

DEVASC.txt to begin tracking changes"

[master (root-commit) b510f8e] Committing DEVASC.txt to begin tracking changes

 1 file changed, 1 insertion(+)

 create mode 100644 DEVASC.txt

devasc@labvm:~/labs/devnet-src/git-intro$

Step 5: Viewing the Commit History.

Use the git log command to show all commits in the current branch's history. By default, all commits are
made to the master branch. (Branches will be discussed later.) The first line is the commit hash with the
commit ID as first 7 characters. The file is committed to the master branch. This is followed by your name and
email address, the date of the commit and the message you included with the commit.

devasc@labvm:~/labs/devnet-src/git-intro$ git log

commit b510f8e5f9f63c97432d108a0413567552c07356 (HEAD -> master)

Author: Sample User <sample@example.com>

Date: Sat Apr 18 18:03:28 2020 +0000

 Committing DEVASC.txt to begin tracking changes

devasc@labvm:~/labs/devnet-src/git-intro$

Part 4: Modifying the File and Tracking the Changes

In this part, you will modify a file, stage the file, commit the file, and verify changes in the repository.

Step 1: Modify the file.

a. Make a change to DEVASC.txt using the echo command. Be sure to use ">>" to append the existing file.
The ">" will overwrite the existing file. Use the cat command to view the modified file.

devasc@labvm:~/labs/devnet-src/git-intro$ echo "I am beginning to understand

Git!" >> DEVASC.txt

b. Use the cat command to view the modified file.

devasc@labvm:~/labs/devnet-src/git-intro$ cat DEVASC.txt

Lab - Software Version Control with Git

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 5 of 15 www.netacad.com

I am on my way to passing the Cisco DEVASC exam

I am beginning to understand Git!

devasc@labvm:~/labs/devnet-src/git-intro$

Step 2: Verify the change to the repository.

Verify the change in the repository using the git status command.

devasc@labvm:~/labs/devnet-src/git-intro$ git status

On branch master

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: DEVASC.txt

no changes added to commit (use "git add" and/or "git commit -a")

devasc@labvm:~/labs/devnet-src/git-intro$

Step 3: Stage the modified file.

The modified file will need to be staged again before it can be committed using the git add command again.

devasc@labvm:~/labs/devnet-src/git-intro$ git add DEVASC.txt

Step 4: Commit the staged file.

Commit the staged file using the git commit command. Notice the new commit ID.

devasc@labvm:~/labs/devnet-src/git-intro$ git commit -m "Added additional

line to file"

[master 9f5c4c5] Added additional line to file

 1 file changed, 1 insertion(+)

devasc@labvm:~/labs/devnet-src/git-intro$

Step 5: Verify the changes in the repository.

a. Use the git log command again to show all commits. Notice that the log contains the original commit
entry along with the entry for the commit you just performed. The latest commit is shown first. The output
highlights the commit ID (first 7 characters of the SHA1 hash), the date/time of the commit, and the
message of the commit for each entry.

devasc@labvm:~/labs/devnet-src/git-intro$ git log

commit 9f5c4c5d630e88abe2a873fe48144e25ebe7bd6a (HEAD -> master)

Author: Sample User <sample@example.com>

Date: Sat Apr 18 19:17:50 2020 +0000

 Added additional line to file

commit b510f8e5f9f63c97432d108a0413567552c07356

Author: Sample User <sample@example.com>

Date: Sat Apr 18 18:03:28 2020 +0000

 Committing DEVASC.txt to begin tracking changes

devasc@labvm:~/labs/devnet-src/git-intro$

Lab - Software Version Control with Git

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 6 of 15 www.netacad.com

b. When you have multiple entries in the log, you can compare the two commits using the git diff command
adding original commit ID first and the latest commit second: git diff <commit ID original> <commit ID
latest>. You will need to use your commit IDs. The "+" sign at the end, followed by the text indicates the
content that was appended to the file.

devasc@labvm:~/labs/devnet-src/git-intro$ git diff b510f8e 9f5c4c5

diff --git a/DEVASC.txt b/DEVASC.txt

index 93cd3fb..085273f 100644

--- a/DEVASC.txt

+++ b/DEVASC.txt

@@ -1 +1,2 @@

 I am on my way to passing the Cisco DEVASC exam

+I am beginning to understand Git!

devasc@labvm:~/labs/devnet-src/git-intro$

Part 5: Branches and Merging

When a repository is created, the files are automatically put in a branch called master. Whenever possible it
is recommended to use branches rather than directly updating the master branch. Branching is used so that
you can make changes in another area without affecting the master branch. This is done to help prevent
accidental updates that might overwrite existing code.

In this part, you will create a new branch, checkout the branch, make changes in the branch, stage and
commit the branch, merge the branch changes to the master branch, and then delete the branch.

Step 1: Create a new branch

Create a new branch called feature using the git branch <branch-name> command.

devasc@labvm:~/labs/devnet-src/git-intro$ git branch feature

Step 2: Verify current branch

Use the git branch command without a branch-name to display all the branches for this repository. The "*"
next to the master branch indicates that this is the current branch – the branch that is currently "checked out".

devasc@labvm:~/labs/devnet-src/git-intro$ git branch

 feature

* master

devasc@labvm:~/labs/devnet-src/git-intro$

Step 3: Checkout the new branch

Use the git checkout <branch-name> command to switch to the feature branch.

devasc@labvm:~/labs/devnet-src/git-intro$ git checkout feature

Step 4: Verify current branch

a. Verify you have switched to the feature branch using the git branch command. Note the "*" next to the
feature branch. This is now the working branch.

devasc@labvm:~/labs/devnet-src/git-intro$ git branch

* feature

 master

devasc@labvm:~/labs/devnet-src/git-intro$

b. Append a new line of text to the DEVASC.txt file, again using the echo command with the ">>" signs.

Lab - Software Version Control with Git

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 7 of 15 www.netacad.com

devasc@labvm:~/labs/devnet-src/git-intro$ echo "This text was added

originally while in the feature branch" >> DEVASC.txt

c. Verify the line was appended to the file using the cat command.

devasc@labvm:~/labs/devnet-src/git-intro$ cat DEVASC.txt

I am on my way to passing the Cisco DEVASC exam

I am beginning to understand Git!

This text was added originally while in the feature branch

devasc@labvm:~/labs/devnet-src/git-intro$

Step 5: Stage the modified file in the feature branch.

a. Stage the updated file to the current feature branch.

devasc@labvm:~/labs/devnet-src/git-intro$ git add DEVASC.txt

b. Use the git status command and notice the modified file DEVASC.txt is staged in the feature branch.

devasc@labvm:~/labs/devnet-src/git-intro$ git status

On branch feature

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: DEVASC.txt

devasc@labvm:~/labs/devnet-src/git-intro$

Step 6: Commit the staged file in the feature branch.

a. Commit the staged file using the git commit command. Notice the new commit ID and your message.

devasc@labvm:~/labs/devnet-src/git-intro$ git commit -m "Added a third line

in feature branch"

[feature cd828a7] Added a third line in feature branch

 1 file changed, 1 insertion(+)

devasc@labvm:~/labs/devnet-src/git-intro$

b. Use the git log command to show all commits including the commit you just did to the feature branch.
The prior commit was done within the master branch.

devasc@labvm:~/labs/devnet-src/git-intro$ git log

commit cd828a73102cf308981d6290113c358cbd387620 (HEAD -> feature)

Author: Sample User <sample@example.com>

Date: Sat Apr 18 22:59:48 2020 +0000

 Added a third line in feature branch

commit 9f5c4c5d630e88abe2a873fe48144e25ebe7bd6a (master)

Author: Sample User <sample@example.com>

Date: Sat Apr 18 19:17:50 2020 +0000

 Added additional line to file

commit b510f8e5f9f63c97432d108a0413567552c07356

Author: Sample User <sample@example.com>

Date: Sat Apr 18 18:03:28 2020 +0000

Lab - Software Version Control with Git

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 8 of 15 www.netacad.com

 Committing DEVASC.txt to begin tracking changes

devasc@labvm:~/labs/devnet-src/git-intro$

Step 7: Checkout the master branch.

Switch to the master branch using the git checkout master command and verify the current working branch
using the git branch command.

devasc@labvm:~/labs/devnet-src/git-intro$ git checkout master

Switched to branch 'master'

devasc@labvm:~/labs/devnet-src/git-intro$ git branch

 feature

* master

devasc@labvm:~/labs/devnet-src/git-intro$

Step 8: Merge file contents from feature to master branch.

a. Branches are often used when implementing new features or fixes. They can be submitted for review by
team members, and then once verified, can be pulled into the main codebase – the master branch.

Merge the contents (known as the history) from the feature branch into the master branch using the git
merge <branch-name> command. The branch-name is the branch that histories are pulled from into the
current branch. The output displays that one file was changed with one line inserted.

devasc@labvm:~/labs/devnet-src/git-intro$ git merge feature

Updating 9f5c4c5..cd828a7

Fast-forward

 DEVASC.txt | 1 +

 1 file changed, 1 insertion(+)

devasc@labvm:~/labs/devnet-src/git-intro$

b. Verify the appended content to the DEVASC.txt file in the master branch using the cat command.

devasc@labvm:~/labs/devnet-src/git-intro$ cat DEVASC.txt

I am on my way to passing the Cisco DEVASC exam

I am beginning to understand Git!

This text was added originally while in the feature branch

devasc@labvm:~/labs/devnet-src/git-intro$

Step 9: Deleting a branch.

a. Verify the feature branch is still available using the git branch command.

devasc@labvm:~/labs/devnet-src/git-intro$ git branch

 feature

* master

devasc@labvm:~/labs/devnet-src/git-intro$

b. Delete the feature branch using the git branch -d <branch-name> command. .

devasc@labvm:~/labs/devnet-src/git-intro$ git branch -d feature

Deleted branch feature (was cd828a7).

devasc@labvm:~/labs/devnet-src/git-intro$

c. Verify the feature branch is no longer available using the git branch command.

devasc@labvm:~/labs/devnet-src/git-intro$ git branch

Lab - Software Version Control with Git

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 9 of 15 www.netacad.com

* master

devasc@labvm:~/labs/devnet-src/git-intro$

Part 6: Handling Merge Conflicts

At times, you may experience a merge conflict. This is when you may have made overlapping changes to a
file, and Git cannot automatically merge the changes.

In this Part, you will create a test branch, modify its content, stage and commit the test branch, switch to the
master branch, modify the content again, stage and commit the master branch, attempt to merge branches,
locate and resolve the conflict, stage and commit the master branch again, and verify your commit.

Step 1: Create a new branch test.

Create a new branch test.

devasc@labvm:~/labs/devnet-src/git-intro$ git branch test

Step 2: Checkout the branch test.

a. Checkout (switch to) the branch test.

devasc@labvm:~/labs/devnet-src/git-intro$ git checkout test

Switched to branch 'test'

devasc@labvm:~/labs/devnet-src/git-intro$

b. Verify the working branch is the test branch.

devasc@labvm:~/labs/devnet-src/git-intro$ git branch

 master

* test

devasc@labvm:~/labs/devnet-src/git-intro$

Step 3: Verify the current contents of DEVASC.txt.

Verify the current contents of the DEVASC.txt file. Notice the first line includes the word "Cisco".

devasc@labvm:~/labs/devnet-src/git-intro$ cat DEVASC.txt

I am on my way to passing the Cisco DEVASC exam

I am beginning to understand Git!

This text was added originally while in the feature branch

devasc@labvm:~/labs/devnet-src/git-intro$

Step 4: Modify the contents of DEVASC.txt in the test branch.

Use the sed command to change the word "Cisco" to "NetAcad" in the DEVASC.txt file.

devasc@labvm:~/labs/devnet-src/git-intro$ sed -i 's/Cisco/NetAcad/'

DEVASC.txt

Step 5: Verify the contents of the modified DEVASC.txt in the test branch.

Verify the change to the DEVASC.txt file.

devasc@labvm:~/labs/devnet-src/git-intro$ cat DEVASC.txt

I am on my way to passing the NetAcad DEVASC exam

I am beginning to understand Git!

This text was added originally while in the feature branch

devasc@labvm:~/labs/devnet-src/git-intro$

Lab - Software Version Control with Git

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 10 of 15 www.netacad.com

Step 6: Stage and commit the test branch.

Stage and commit the file with a single git commit -a command. The -a option only affects files that have
been modified and deleted. It does not affect new files.

devasc@labvm:~/labs/devnet-src/git-intro$ git commit -a -m "Change Cisco to

NetAcad"

[test b6130a6] Change Cisco to NetAcad

 1 file changed, 1 insertion(+), 1 deletion(-)

devasc@labvm:~/labs/devnet-src/git-intro$

Step 7: Checkout the master branch.

a. Checkout (switch to) the master branch.

devasc@labvm:~/labs/devnet-src/git-intro$ git checkout master

Switched to branch 'master'

devasc@labvm:~/labs/devnet-src/git-intro$

b. Verify that the master branch is your current working branch.

devasc@labvm:~/labs/devnet-src/git-intro$ git branch

* master

 test

devasc@labvm:~/labs/devnet-src/git-intro$

Step 8: Modify the contents of DEVASC.txt in the master branch.

Use the sed command to change the word "Cisco" to "DevNet" in the DEVASC.txt file.

devasc@labvm:~/labs/devnet-src/git-intro$ sed -i 's/Cisco/DevNet/' DEVASC.txt

Step 9: Verify the contents of the modified DEVASC.txt in the master branch.

Verify the change to the file.

devasc@labvm:~/labs/devnet-src/git-intro$ cat DEVASC.txt

I am on my way to passing the DevNet DEVASC exam

I am beginning to understand Git!

This text was added originally while in the feature branch

devasc@labvm:~/labs/devnet-src/git-intro$

Step 10: Stage and commit the master branch.

Stage and commit the file using the git commit -a command.

devasc@labvm:~/labs/devnet-src/git-intro$ git commit -a -m "Changed Cisco to

DevNet"

[master 72996c0] Changed Cisco to DevNet

 1 file changed, 1 insertion(+), 1 deletion(-)

devasc@labvm:~/labs/devnet-src/git-intro$

Step 11: Attempt to merge the test branch into the master branch.

Attempt to merge the test branch history into the master branch.

devasc@labvm:~/labs/devnet-src/git-intro$ git merge test

Auto-merging DEVASC.txt

CONFLICT (content): Merge conflict in DEVASC.txt

Lab - Software Version Control with Git

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 11 of 15 www.netacad.com

Automatic merge failed; fix conflicts and then commit the result.

devasc@labvm:~/labs/devnet-src/git-intro$

Step 12: Find the conflict.

a. Use the git log command to view the commits. Notice that the HEAD version is the master branch. This
will be helpful in the next step.

devasc@labvm:~/labs/devnet-src/git-intro$ git log

commit 72996c09fa0ac5dd0b8ab9ec9f8530ae2c5c4eb6 (HEAD -> master)

Author: Sample User <sample@example.com>

Date: Sun Apr 19 00:36:05 2020 +0000

 Changed Cisco to DevNet

<output omitted>

b. Use the cat command to view the contents of the DEVASC.txt file. The file now contains information to
help you find the conflict. The HEAD version (master branch) containing the word "DevNet" is conflicting
with the test branch version and the word "NetAcad".

devasc@labvm:~/labs/devnet-src/git-intro$ cat DEVASC.txt

<<<<<<< HEAD

I am on my way to passing the DevNet DEVASC exam

=======

I am on my way to passing the NetAcad DEVASC exam

>>>>>>> test

I am beginning to understand Git!

This text was added originally while in the feature branch

devasc@labvm:~/labs/devnet-src/git-intro$

Step 13: Manually edit the DEVASC.txt file to remove the conflicting text.

a. Use the vim command to edit the file.

devasc@labvm:~/labs/devnet-src/git-intro$ vim DEVASC.txt

b. Use the up and down arrow to select the proper line of text. Press dd (delete) on the following lines that
are highlighted. dd will delete the line the cursor is on.

<<<<<<< HEAD

I am on my way to passing the DevNet DEVASC exam

=======

I am on my way to passing the NetAcad DEVASC exam

>>>>>>> test

I am beginning to understand Git!

This text was added originally while in the feature branch

c. Save your changes in vim by pressing ESC (the escape key) and then typing : (colon) followed by wq
and press enter.

ESC

:

wq

<Enter or Return>

Lab - Software Version Control with Git

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 12 of 15 www.netacad.com

Step 14: Verify your edits of DEVASC.txt in the master branch.

Verify you changes using the cat command.

devasc@labvm:~/labs/devnet-src/git-intro$ cat DEVASC.txt

I am on my way to passing the DevNet DEVASC exam

I am beginning to understand Git!

This text was added originally while in the feature branch

devasc@labvm:~/labs/devnet-src/git-intro$

Step 15: Stage and commit the master branch.

Stage and commit DEVASC.txt to the master branch using the git commit -a command.

devasc@labvm:~/labs/devnet-src/git-intro$ git add DEVASC.txt

devasc@labvm:~/labs/devnet-src/git-intro$ git commit -a -m "Manually merged

from test branch"

[master 22d3da4] Manually merged from test branch

devasc@labvm:~/labs/devnet-src/git-intro$

Step 16: Verify the commit.

Use the git log command to verify the commit. If necessary, you can use q to quit out of the git log display.

devasc@labvm:~/labs/devnet-src/git-intro$ git log

commit 22d3da41e00549ce69dc145a84884af6a1697734 (HEAD -> master)

Merge: 72996c0 b6130a6

Author: Sample User <sample@example.com>

Date: Sun Apr 19 01:09:53 2020 +0000

 manually merged from branch test

<output omitted>

Part 7: Integrating Git with GitHub

So far, all the changes you have made to your file have been stored on your local machine. Git runs locally
and does not require any central file server or cloud-based hosting service. Git allows a user to locally store
and manage files.

Although Git is useful for a single user, integrating the local Git repository with a cloud-based server like
GitHub is helpful when working within a team. Each team member keeps a copy on the repository on their
local machine and updates the central cloud-based repository to share any changes.

There are quite a few popular Git services, including GitHub, Stash from Atlassian, and GitLab. Because it is
readily accessible, you will use GitHub in these examples.

Step 1: Create a GitHub Account.

If you have not so previously, go to github.com and create a GitHub account. If you have a GitHub account go
to step 2.

Step 2: Log into your GitHub Account Create a Repository.

Log into your GitHub account.

Lab - Software Version Control with Git

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 13 of 15 www.netacad.com

Step 3: Create a Repository.

a. Select the "New repository" button or click on the "+" icon in the upper right corner and select "New
repository".

b. Create a repository using the following information:

Repository name: devasc-study-team

Description: Working together to pass the DEVASC exam

Public/Private: Private

c. Select: Create repository

Step 4: Create a new directory devasc-study-team.

a. If you are not already in the git-intro directory, change to it now.

devasc@labvm:~$ cd ~/labs/devnet-src/git-intro

b. Make a new directory called devasc-study-team. The directory does not have to match the name as the
repository.

devasc@labvm:~/labs/devnet-src/git-intro$ mkdir devasc-study-team

Step 5: Change directory to devasc-study-team.

Use the cd command to change directories to devasc-study-team.

devasc@labvm:~/labs/devnet-src/git-intro$ cd devasc-study-team

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$

Step 6: Copy the DEVASC file.

a. Use the cp command to copy the DEVASC.txt from git-intro parent directory to the devasc-study-team
sub-directory. The two periods and a slash prior the file name indicates the parent directory. The space
and period following the file name indicates to copy file in the current directory with the same file name.

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$ cp ../DEVASC.txt

.

b. Verify the file was copied with the ls command and the contents of the file with the cat command.

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$ ls

DEVASC.txt

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$ cat DEVASC.txt

I am on my way to passing the DevNet DEVASC exam

I am beginning to understand Git!

This text was added originally while in the feature branch

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$

Step 7: Initialize a new Git repository.

a. Use the git init command to initialize the current directory (devasc-study-team) as a Git repository. The
message displayed indicates that you have created a local repository within your project contained in the
hidden directory .git. This is where all of your change history is located.

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$ git init

Initialized empty Git repository in /home/devasc/src/git-intro/devasc-study-team/.git/

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$

b. Next, check your global git variables with the git config --list command.

Lab - Software Version Control with Git

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 14 of 15 www.netacad.com

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$ git config --list

user.name=SampleUser

user.email=sample@example.com

core.repositoryformatversion=0

core.filemode=true

core.bare=false

core.logallrefupdates=true

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$

c. If the user.name and user.email variables do not match your GitHub credentials, change them now.

devasc@labvm:~$ git config --global user.name "GitHub username"

devasc@labvm:~$ git config --global user.email GitHub-email-address

Step 8: Point Git repository to GitHub repository.

a. Use the git remote add command to add a Git URL as a remote alias. The value "origin" points to the
newly created repository on GitHub. Use your GitHub username in the URL path for github-username.

Note: Your username is case-sensitive.

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$ git remote add

origin https://github.com/github-username/devasc-study-team.git

b. Verify the remote is running on github.com.

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$ git remote --

verbose

origin https://github.com/username/devasc-study-team.git (fetch)

origin https://github.com/username/devasc-study-team.git (push)

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$

c. View the git log. The error indicates that there are no commits.

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$ git log

fatal: your current branch 'master' does not have any commits yet

Step 9: Stage and Commit the DEVASC.txt file.

a. Use the git add command to stage the DEVASC.txt file.

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$ git add

DEVASC.txt

b. Use git commit command to commit the DEVASC.txt file.

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$ git commit -m

"Add DEVASC.txt file to devasc-study-team"

[master (root-commit) c60635f] Add DEVASC.txt file to devasc-study-team

 1 file changed, 3 insertions(+)

 create mode 100644 DEVASC.txt

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$

Step 10: Verify the commit.

a. Use the git log command to verify the commit.

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$ git log

commit c60635fe4a1f85667641afb9373e7f49a287bdd6 (HEAD -> master)

Author: username <user@example.com>

Lab - Software Version Control with Git

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 15 of 15 www.netacad.com

Date: Mon Apr 20 02:48:21 2020 +0000

 Add DEVASC.txt file to devasc-study-team

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$

b. Use the git status command to view status information. The phrase "working tree clean" means that Git
has compared your file listing to what you've told Git, and it's a clean slate with nothing new to report.

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$ git status

On branch master

nothing to commit, working tree clean

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$

Step 11: Send (push) the file from Git to GitHub.

Use the git push origin master command to send (push) the file to your GitHub repository. You will be
prompted for a username and password, which will be the one you used to create your GitHub account.

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$ git push origin

master

Username for 'https://github.com': username

Password for 'https://username@github.com': password

Enumerating objects: 3, done.

Counting objects: 100% (3/3), done.

Delta compression using up to 2 threads

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 347 bytes | 347.00 KiB/s, done.

Total 3 (delta 0), reused 0 (delta 0)

To https://github.com/username/devasc-study-team.git

 * [new branch] master -> master

devasc@labvm:~/labs/devnet-src/git-intro/devasc-study-team$

Note: If, after entering your username and password, you get a fatal error stating repository is not found,
you most likely submitted an incorrect URL. You will need to reverse your git add command with the git
remote rm origin command.

Step 12: Verify file on GitHub.

a. Go to your GitHub account and under "Repositories" select username/devasc-study-team.

b. You should see that the DEVASC.txt file has been added to this GitHub repository. Click on the file to
view the contents.

End of document

